adjustable hole form - meaning and definition. What is adjustable hole form
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is adjustable hole form - definition

CONCEPTUAL AND MATHEMATICAL OPPOSITE OF AN ELECTRON
Electron holes; Hole (quasiparticle); Electron-hole; Hole conduction; Hole theory of electrons; Hole (semiconductor); Hole (electricity)
  • A children's puzzle which illustrates the mobility of holes in an atomic lattice. The tiles are analogous to electrons, while the missing tile ''(lower right corner)'' is analogous to a hole.  Just as the position of the missing tile can be moved to different locations by moving the tiles, a hole in a crystal lattice can move to different positions in the lattice by the motion of the surrounding electrons.
  • effective mass]]. The "filled band" is the semiconductor's [[valence band]]; it curves downward indicating negative effective mass.

Adjustable spanner         
WRENCH
Adjustable wrench; Crescent wrench; Shifting spanner; Crescent Wrench; Adjustable wrenches; Shifter (tool); Adjustable end wrench; French Key; Pliers wrench
An adjustable spanner (UK and most other English-speaking countries) or adjustable wrench (US and Canada) is any of various styles of spanner (wrench) with a movable jaw, allowing it to be used with different sizes of fastener head (nut, bolt, etc.) rather than just one fastener size, as with a conventional fixed spanner.
Indian tax forms         
Form 16; Form 2E; Form 3CA; Form 3CB; Form 3CD; Form 3CE; Form 15CA; Form 22; Form 10BA
Indian tax forms are used to document information in compliance with the Income Tax Act of 1961 and in accordance with the Income Tax Rules (codified in 1962), which govern the process of filing income tax returns in India.
Canonical form         
  • C]] arrays. Each one is converted into a canonical form by sorting. Since both sorted strings literally agree, the original strings were anagrams of each other.
STANDARD (OFTEN UNIQUE) WAY OF PRESENTING AN OBJECT AS A MATHEMATICAL EXPRESSION
Canonical sum of products form; Data normalization; Normal form (mathematics); Canonical Form; Canonical form (mathematics)
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and which allows it to be identified in a unique way.

Wikipedia

Electron hole

In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or crystal lattice the negative charge of the electrons is balanced by the positive charge of the atomic nuclei, the absence of an electron leaves a net positive charge at the hole's location.

Holes in a metal or semiconductor crystal lattice can move through the lattice as electrons can, and act similarly to positively-charged particles. They play an important role in the operation of semiconductor devices such as transistors, diodes and integrated circuits. If an electron is excited into a higher state it leaves a hole in its old state. This meaning is used in Auger electron spectroscopy (and other x-ray techniques), in computational chemistry, and to explain the low electron-electron scattering-rate in crystals (metals and semiconductors). Although they act like elementary particles, holes are rather quasiparticles; they are different from the positron, which is the antiparticle of the electron. (See also Dirac sea.)

In crystals, electronic band structure calculations lead to an effective mass for the electrons that is typically negative at the top of a band. The negative mass is an unintuitive concept, and in these situations, a more familiar picture is found by considering a positive charge with a positive mass.